
Demo Documentation
Release 0.1.3

Andras Gefferth

Nov 04, 2021





CONTENTS

1 Getting started 3

2 User guide 5

3 What’s New 11

4 Indices and tables 13

i



ii



Demo Documentation, Release 0.1.3

The primary purpose of autocalc is to foster the creation of interactive apps from your Jupyter notebooks by providing
a framework to setup the dependencies between your variables and ensuring they are kept in sync. Although other
similar framework exist, autocalc shines in its simplicity and ease-of-use. It is targeted mainly at data-scientist who
would like to turn their notebook into an app without having to learn external libraries.

CONTENTS 1



Demo Documentation, Release 0.1.3

2 CONTENTS



CHAPTER

ONE

GETTING STARTED

1.1 Introduction

1.1.1 Purpose

The purpose of the autocalc package is to help the creator of Python-based interactive app developers (primarily those
using Jupyter notebook) by providing a framework to set-up the dependencies between their internal and external
variables.

Ok, now what does this mean? Building an app requires interaction from the user. Output values (numbers, graphs,
tables, etc.) are based on the input parameters either directly or indirectly through other variables, hidden from the
user. As long as the user specifies the variables in their “proper order” all other variables can be calculated in the order
which is specified by their dependencies, or dependency-graph, if you like. But what happens if user changes the value
of an already defined input parameter? All other variables (internal, or public) which depend on it either directly or
indirectly need to be recalculated.

Without the use of autocalc or a similar framework the user would need to implement tons of callback functions , which
would need to be maintained whenever new variables are introduced in the system. Note, that the code also needs to
properly update variables which depend indirectly on the input parameters. Coding and maintaining these callback
functions can easily become a nightmare.

That’s where autocalc comes to help. Define the depencies and the functional relationships between your variables
using a very simple construct and let the framework take care of keeping your variables in sync. Think in terms of
“what”, not “how”! Build interactive apps with with minimal (even zero) callback functions!

3



Demo Documentation, Release 0.1.3

1.1.2 Do you know Excel?

Think about Excel and other similar spreadsheet apps. The main idea is to make the value of cells depend on other
cells. You don’t need to write any VBA to keep those cells in sync! Same with autocalc: set up the dependency graph
and let the library take care of the rest!

1.1.3 Why autocalc?

Although other similar frameworks exist, where autocalc shines is its simplicity: use a single language construct to set
up the dependency graph.

1.2 Install

autocalc can be installed using pip:

pip install autocalc

1.3 Hello World Example

• Note, that interactivity does not work in the static HTML docs.

• You can download the source of this page as a Jupyter notebook using the “View page source” or “Edit on
GitHub” link in the upper right corner.

[1]: from autocalc.autocalc import Var
import ipywidgets as widgets

[2]: name_input=Var('Your name', description='Enter your name', widget=widgets.Text())

def greeting_text(name):
return f'Hello {name}'

greeting = Var('Greeting', fun=greeting_text, inputs=[name_input], widget=widgets.Text(),
→˓ read_only=True)

[3]: display(name_input)
display(greeting)

HBox(children=(Button(description='Your name (?)', disabled=True,␣
→˓style=ButtonStyle(button_color='lightgreen')...

HBox(children=(Button(description='Greeting', disabled=True, style=ButtonStyle()),␣
→˓Text(value='', disabled=Tru...

[4]: display(greeting.widget)

Text(value='', disabled=True)

4 Chapter 1. Getting started



CHAPTER

TWO

USER GUIDE

2.1 Concept

The idea of the autocalc framework is to build a dependency-graph from your variables. Assume you are building some
document retrieval app, where users can first select the year of the document, then based on the year they can select the
relevant topic from the list of topics available for the given year and then they can select the document itself.

In a linear workflow you can assume that users follow the above steps in the above order. And this is what they will
do when they start to work with the app. But when they are working with the app they might just go back and select a
different year. In this case, the previously generated list of topics is no longer valid, it needs to be reloaded.

The autocalc framwork lets you set up a logical relationship between the document year and the list of relevant topics,
so that the latter gets reloaded when the former is changed.

Why do we call it a dependency graph? Because in any non-trivial system we won’t just have two variables, but much
more. There can be a complex dependency structure between those variables: variable A may depend on B which
depends on C, so as a result A also depends indirectly on C. So when C changes, both A and B need to be recalculated.

The idea concept may be very similar to you if you work in Excel: If you set a formula for one cell, this cell will be
automatically updated when the value of any cell in the formula changes.

2.2 The Var object

Fortunately for you, the autocalc package is very easy to use: There is one single class (Var) which you need to learn
in order to utilize its features.

Var is a wrapper around any variable which you would like to be part of the dependency-graph. In addition to holding
the variable, it stores all the necessary information to describe the position of the variable in the graph (ie. its neighbors
upstream and downstream) some meta-data (e.g. default value) and the corresponding widget if any.

2.2.1 The task

So let’s dive into it and build an app to calculate the roots of a quadratic equation: 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. During this
process we will introduce the Var object.

Remember, that the solutions are given by:

• 𝑥1 = −𝑏+𝐷
2𝑎 , and

• 𝑥2 = −𝑏−𝐷
2𝑎 , where

• 𝐷 =
√
𝑏2 − 4𝑎𝑐.

5



Demo Documentation, Release 0.1.3

In this example we will concentrate on real roots only, excluding complex ones. First we will give a “widget-less”
solution, where we will use pure Python methods to manipulate the values. This will enable us to introduce the “low-
level” interface to Var objects. Adding interactivity through widgets is straightforward and will be shown in section
Using widgets to interact with autocalc.

2.2.2 Imports

As far as the autocalc package is concerned we need to import the Var object only:

from autocalc.autocalc import Var

For this particular example we additionally need:

import math

2.2.3 Input variables

The variables a, b and c are pure input variables, they do not depend on others, so they can simply be defined as:

a = Var('a', initial_value = 1)
b = Var('b', initial_value = -3)
c = Var('c', initial_value = 1)

The first, positional, argument to Var is its name. You can give arbitrary names to the Vars, they don’t need to be
distinct. They are only used when displaying the Var. All other arguments are keyword-only.

2.2.4 Calculated variables

The next Var we will introduce is D. It is calculated from a, b and c by the following function:

def Dfun(a, b, c):
try:

return math.sqrt(b*b-4*a*c)
except ValueError:

return math.nan

The corresponding Var is defined as:

D = Var('D', fun=Dfun, inputs=[a, b, c], read_only=True)

For D we had to define the function, which is used to calculate it, as well as the input Vars which need to be bound to
the function. The inputs argument to Var is a list, the order needs to match the order of the positional arguments of the
function.

6 Chapter 2. User guide



Demo Documentation, Release 0.1.3

2.2.5 Read-only variables

Note the we set D to be a read-only variable. It means, that its value can change, but only through its inputs; it
is not allowed to change its value directly. At first it may seem obvious that if a value is a function of other vari-
ables then it should be read-only. However, there may be cases when the function value only gives a “default” value,
which the user may override. For example: in your app you load a custom configuration file and you set your cus-
tom_configuration_xml variable accordingly. It is natural to set your use_custom_configuration boolean variable to
True whenever the custom_configuration_xml variable changes as you can assume, that the user set a custom value
in order to use it. So the use_custom_configuration variable depends on custom_configuration_xml variable trough
some function which e.g. checks the correctness of custom_configuration_xml and returns True if it succeeds. This
will assure that use_custom_configuration will be reset to True whenever custom_configuration_xml changes, as we
can assume that the user just set it in order to use it. However you want to give the user the chance to switch off the
usage of the custom configuration without having to manipulate the custom_configuration_xml variable. So in this case
use_custom_configuration is the result of another variable but can also be overwritten manually.

The reason why we introduced D is to share the results between the two solutions: 𝑥1 and 𝑥2. (Actually the real reason
is to show you how this can be done :) )

2.2.6 Solutions

The two solutions (𝑥1 and 𝑥2) can also be defined with the help of calculation functions and their corresponding inputs
as:

def x1fun(a,b,D):
return (-b-D)/2/a

def x2fun(a,b,D):
return (-b+D)/2/a

x1 = Var('X1', fun=x1fun, inputs=[a, b, D], read_only=True, description='The first␣
→˓solution of the equation')
x2 = Var('X2', fun=x2fun, inputs=[a, b, D], read_only=True, description='The second␣
→˓solution of the equation')

So, as you can see, 𝑥1 and 𝑥2 depend on a, b and D and through D also indirectly on c. Also note, that we can add a
descritpion to the Var, which will be used when displaying the Var in Jupyter notebook. See Using widgets to interact
with autocalc.

2.2.7 Reading and writing the variables

So by now we’ve set up our variables, but how do we give values to them and how do we read their values? This would
be trivial if we used widgets, but this is not the only way we can do these operaions.

Reading and writing the variables is achieved through the .set and .get methods:

a.set(10)
b.set(-12)
print(x1.get())
print(a.get()*x1.get()*x1.get() + b.get()*x1.get() + c.get())

We also need to mention the .recalc() method which will force a recalculation of the value, even if the value is already
calculated. This may be useful for those “non read-only” Vars which depend on other Vars and we would like to reset
their “default” value.

2.2. The Var object 7



Demo Documentation, Release 0.1.3

We also need to mention the optional output variable undefined_inputs of the .get() method. If a set is passed as input
then it will collect all other Vars on which directly or indirectly this Var depends but are in an Undefined state and
therefore do not allow the calculation of this Var. This can be used for “debugging” purposes on the user level, i.e. to
give a meaningful message to the user as to why the calculation failed.

2.3 Using widgets to interact with autocalc

Using widgets is relatively straightforward. At the moment autocalc only supports Ipywidgets. Simply define the value
of the widget parameter when defining your Var:

name_input=Var('Your name', description='Enter your name', widget=widgets.Text())

It is your responsibility to display the widget when and where you wish, which you can refer to as name_input.widget.

There is one feature, which autocalc provides: you can display the Var itself, like:

display(name_input)

This will display not only the widget, but will also put a label in front of it showing its name and its optional description
when hovered over.

If you would like to get access to the set of widgets display by the display function you can get it with the .w member.
E.g.:

display(HBOX([some_other_widget, name_input.w]))

When using the widgets, you don’t need to use explicit .set() and .get() methods as they are handled by autocalc. Except
when using Lazy variables, in which case the .get() method needs to be called explicitly.

2.3.1 Undefined values

Note, that the state of the Var may be undefined. This state can not be intuitively represented by most of the widgets.
E.g. an empty TextBox can’t be distinguished from an undefined one. But be assured, the state of the Var will be
undefined.

2.4 Advanced features

2.4.1 Lazy variables

In many cases there are some variables, which depend on more than one input variable and are slow to calculate. In
these cases it is usually not the best approach to recalculate them every time when one of their input changes. It is a
waste of resources and gives a frustrating experience to the user.

We will can flag such variables with the “lazy” flag, by setting their lazy flag to True:

my_slow_var = Var('MY_VAR', fun=my_fun, inputs=[a, b], lazy=True)

For such variables, the function will only be evaluated once the user calls the .get() method explicitly. In an interactive
Jupyter interface this can easily be achieved by adding a “Calc” button, whose action is to call .get() on the relevant
Var.

8 Chapter 2. User guide



Demo Documentation, Release 0.1.3

Another option is to use the autocalc.tools.PreviewAcc class, which is derived from ipywidgets.Accordion and
does a recalculation when the Accordion is opened.

Note, that although lazy variables are not recalculated when one of their inputs change, leaving them with the previous
value would result in an inconsistent state. In this case this vars will be invalidated and assigned an “undefined” state,
which brings us to the next topic:

2.4.2 Undefined variables

The Vars you defined do not necessarily have a value. For example they may be input variables, where user input is
expected, or lazily calculated variables before triggering their recalculation. Such variables are in an undefined state
(my_var.is_undefined() evaluates to True). Ideally all values are defined before they are being used, but is in everyday
situation that user skips the setting of some relevant variables and so the calculation cannot be performed.

In order to be prepared for such cases in our UI we can either directly inquire the relevant variables and check their state
through the .is_undefined method, or more conveniently can pass in a Python set object as the optional undefined_inputs
parameter of the .get() method, which will collect all necessary but undefined objects.

Note, that a Var can be explicitly invalidated by using the .clear() method.

By default, the calculation of a Vars function is not triggered when any of its inputs is not defined. However, there may
be cases, when depending on the value of some other parameters, one of the inputs parameters value is not relevant.
E.g.:

def custom_function(a, b):
if a > 5:

return a
else:

return b

For such cases the user may allow the calculation of such functions by setting the undefined_input_handling parameter
of the Var constructor to ‘function’. To guard against unexpected errors during function evaluation one can check
whether a value is undefined using the is undefined syntax, like:

from autocalc.autocalc import undefined

def custom_function(a, b):
if a is undefined:

return undefined
if a > 5:

return a
else:

if b is undefined:
return undefined

else:
return b

2.4. Advanced features 9



Demo Documentation, Release 0.1.3

10 Chapter 2. User guide



CHAPTER

THREE

WHAT’S NEW

3.1 v0.1.3

3.1.1 Documentation

• Created a proper README.rst file introducing the purpose, main features and a code example.

• Added the whole “Getting Started” and “User Guide” sections to the sphinx doc

3.2 v0.1.0

3.2.1 New Features

• There is a new undefined_inputs parameter to the get and recalc methods. If the function can not be
evaluated because some of the inputs are undefined, these inputs are collected into this variable.

• The PreviewAcc class now reports which inputs are missing to calculate the results.

• The titles parameter of PreviewAcc now allows to specify an optional ‘open’-key, which will be displayed,
when the Accordion is in an open state.

3.2.2 Bug fixes

• More robust handling of undefined values with widgets

3.2.3 Internal Changes

• Unittests

11



Demo Documentation, Release 0.1.3

12 Chapter 3. What’s New



CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

13


	Getting started
	Introduction
	Purpose
	Do you know Excel?
	Why autocalc?

	Install
	Hello World Example

	User guide
	Concept
	The Var object
	The task
	Imports
	Input variables
	Calculated variables
	Read-only variables
	Solutions
	Reading and writing the variables

	Using widgets to interact with autocalc
	Undefined values

	Advanced features
	Lazy variables
	Undefined variables


	What’s New
	v0.1.3
	Documentation

	v0.1.0
	New Features
	Bug fixes
	Internal Changes


	Indices and tables

